A Review of Durability Design Options for Marine Concrete Structures

on the basis of Service Life, Maintenance and Whole of Life Cost

Dr Gitte Goffin

Presentation Outline

Corrosion Basics

Supplementary Cementitious Materials

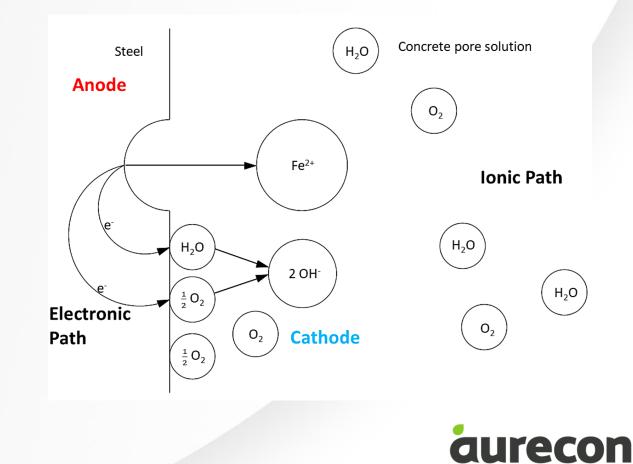
- Effects on Durability
- Risks
- Design Life: Concrete Cover

Chemical Inhibitors

- Effects on Durability
- Risks
- Design Life: Concrete Cover

Cathodic Protection

Conclusions & Recommendations


Corrosion

Oxidation of steelReduction of water

□Passive layer

- Passive Oxide layer formed due to high pH of concrete >pH12
- Protects steel from corrosion
- Not stable and may be de-passivated or degraded under aggressive circumstances (e.g. carbonation, chloride etc.)

Supplementary Cementitious Materials:

- □ Industrial byproducts used to replace cement in concrete
- □ Admixed with concrete for new construction
- Increases chloride binding
- □ Reduces permeability and age-dependant apparent diffusion coefficient
 - Reduced porosity
 - □Age effect: Less inter-connectivity between pores
 - Formation of secondary reaction products which fill up pores within the cement matrix

Common SCMs:

- □ Coal industry: Fly ash (FA)
- □ Steel industry: Glass granulated blast furnace slag (GGBFS)
- □ Silicon industry: Silica fume (SF)

Bringing ideas to life

Effect on durability:

Reduced -

Embodied carbon

Use of industrial byproducts when compared to Ordinary Portlandite Cement alone

□ Heat of hydration – less thermal cracking

Permeability

- Especially Silica fume due to its small spherical particles
- Age effects less pore connectivity

Increased -

Chloride binding

- Reduction in the available free chloride
- Especially slag

Increased resistance to sulphate attack and alkali-silica reaction

Risks:

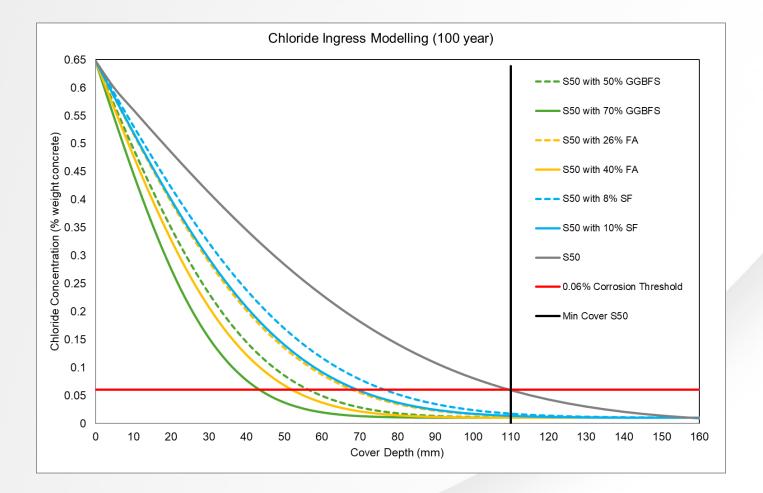
Reduction in carbonation resistance

Risk: Corrosion may initiate earlier

Prevention:

□ Application of anti-carbonation coating

□Use GGBFS (over FA)


□Increase cover

□Reduction in workability (SF)

Risk: Improper placement, compaction and finishingPrevention:

□Use of high range water reducing admixtures □Limit to <8% SF in mix designs

Chemical inhibitors:

□ Change the surface chemistry of the steel

Can provide corrosion protection even in the presence of high chloride concentrations

Dose rate dependant on expected chloride concentrations

□Nitrite inhibitors:

Inorganic, anodic type of corrosion inhibitor

□ Prevents the anodic reaction of the metal (i.e. corrosion of steel)

Admixed with concrete for new construction

□ Increased chemical stability of iron oxide passive layer by forcing free iron (Fe²⁺) to form a stable oxide Fe₂O₃

Effects on Durability:

Reduction in corrosion rate with increasing dose rate

Increased time to corrosion initiation (hence service life) due to

□Net reduction in corrosion rate

Increased resistance to chloride induced corrosion

Less effective in resisting carbonation induced corrosion

Still largely dependent on the pH

Risks:

Reduction in concrete resistivity

Risk: Corrosion may propagate faster once initiated - particularly in saturated concrete
Prevention:

Dose rate specified to result in excess nitrites in the cement matrix – low risk

Regular monitoring to ensure net beneficial NO₂/Cl⁻ ratio is maintained

□Can act as a set accelerator

Risk:

□ Placement and compaction issues if set initiates too quickly

Thermal cracking

Increased porosity/permeability

Reduced long term compressive strength

□ Prevention:

□Use of set-retarding admixtures

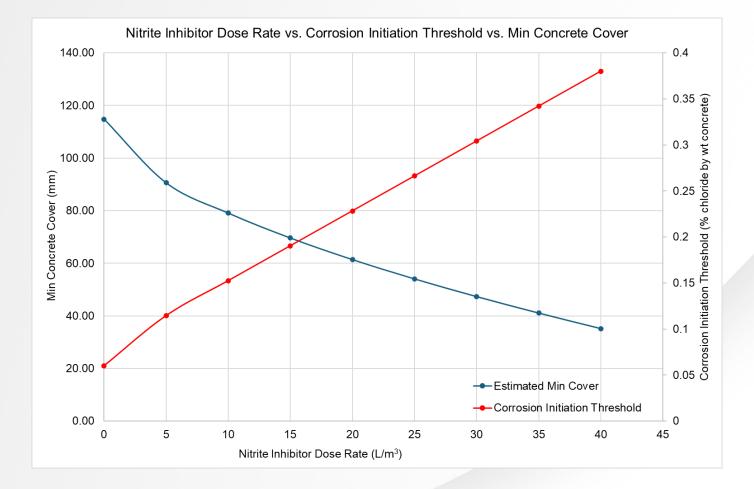
Control of nitrite dose rates

Control of concrete temperature - prior to delivery and placement

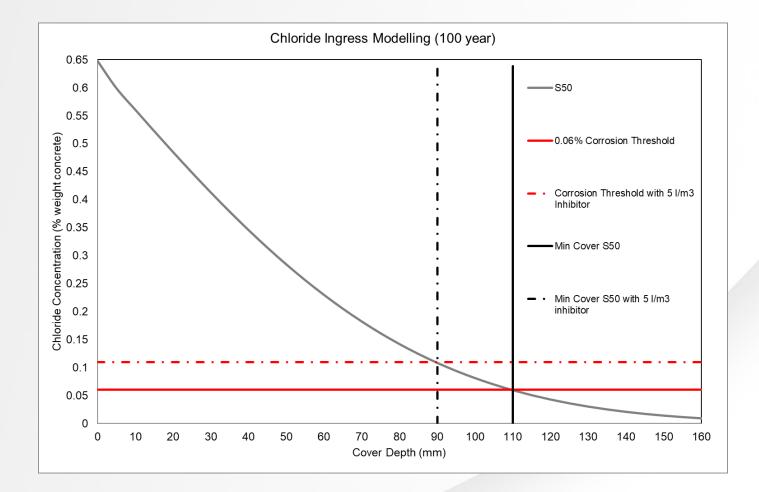
Risks:

Surface leaching in tidal / splash zones

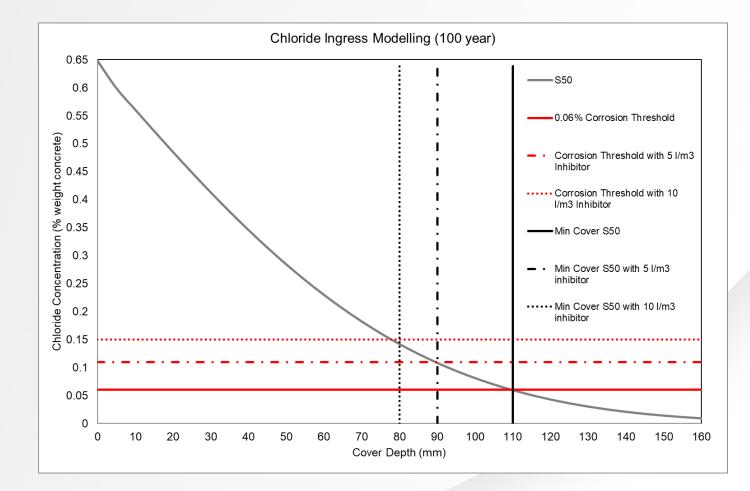
Risk: Insufficient nitrite dosing to provide protection

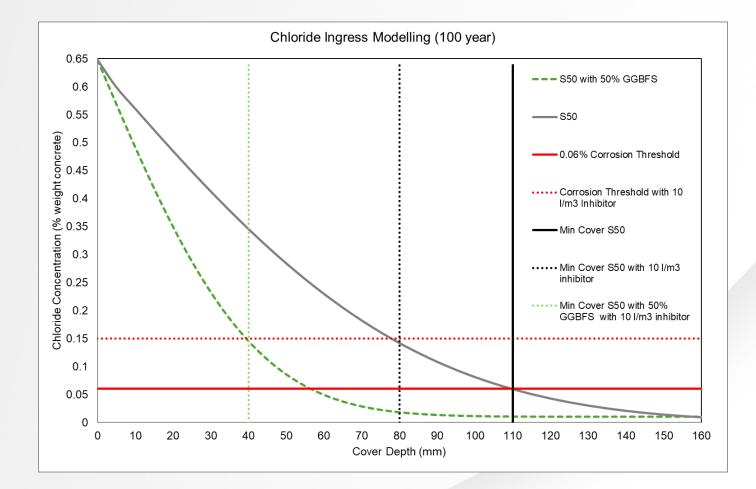

Prevention:

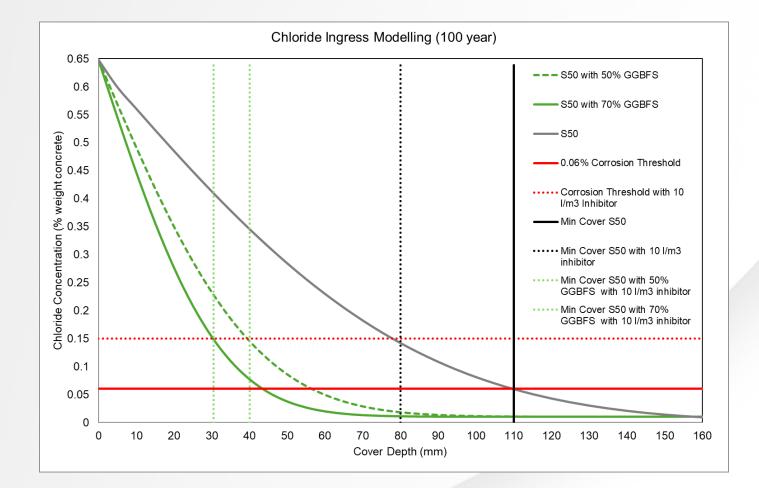
Nitrite inhibitors are bound in the pore water / cement matrix and unlikely to back migrate / diffuse from the concrete

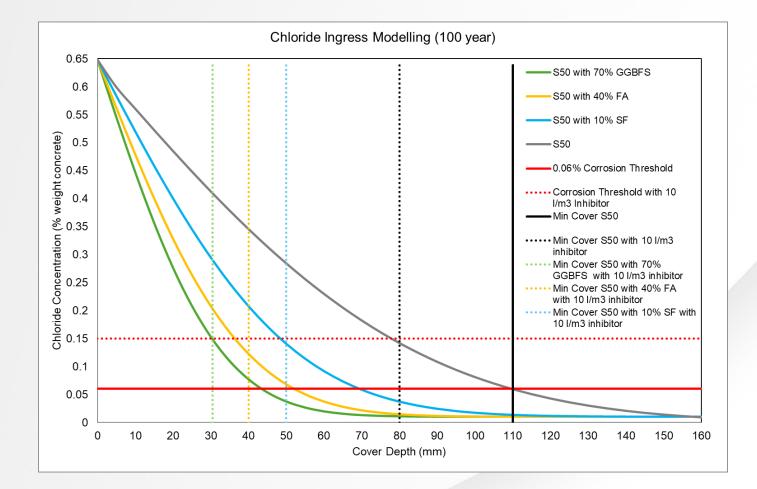

Testing to assess convection zone leaching

Dose rates typically specified to result in excess nitrites in cement matrix









Design Options – Cathodic Protection (CP)

Option 1

At design stage

Ensure reinforcement continuity

□Maintenance:

During service life:

Monitor chloride concentration

- □ Chloride threshold reached:
 - Monitor half-cell potentials
 - Breakouts to confirm corrosion

□ Active corrosion:

- CP system installation
- Concrete patch repairs as required
- CP maintenance (ref. Option 2)

Option 2

□At design stage

□ CP system installation

□Maintenance:

- During service life:
 - - Monitor instant off potential etc.
 - Adjust current as required
 - □ SACP (Galvanic)
 - Monitor open circuit potential
 - Replace sacrificial anode as required (if water anodes)

Option 3

(not recommended, but is usually what happens)

□At design stage

No reinforcement continuity

□Maintenance:

During service life:

Monitor chloride concentration

- □ Chloride threshold reached:
 - Monitor half-cell potentials
 - Breakouts to confirm corrosion
- □ Active corrosion:

CP system installation

- Concrete patch repairs as required
- CP maintenance (ref. Option 2)

Design Options – Cathodic Protection (CP)

Option 1

At design stage

Ensure reinforcement continuity

Cost:

- Low upfront cost
- Maintenance cost dependant on CP system
- Low whole of life cost

Option 2

- □At design stage
 - CP system installation

Cost:

- Highest upfront cost
- Maintenance cost
 - High for ICCP
 - Low for SACP
- Moderate whole of life cost
 - Higher for ICCP compared to SACP

Option 3

(not recommended, but is usually what happens)

□At design stage

No reinforcement continuity

Cost:

Lowest upfront

High maintenance cost

Maintenance cost dependant on CP system

Highest whole of life cost

Conclusions & Recommendations

□At design stage:

□ Ensure **reinforcement electrical continuity** for future CP

□ Adjust <u>SCM</u> ratios based on exposure specific service life models

Consider use of corrosion inhibitors for spray and / or tidal zone

□ Ensure the durability 3Cs: Cover, Curing, Compaction!

Conclusions & Recommendations

□Maintenance:

During service life:

□ Monitor chloride ingress concentration (regardless of design)

□ Chloride threshold reached:

□ Monitor half-cell potentials

Breakouts to confirm corrosion

□ Active corrosion:

□Installation of CP

- Postponed by <u>inhibitors</u> due to increased chloride threshold (if used)
- Postponed by <u>SCMs</u> at the same cover depth due to reduced age dependant apparent diffusion coefficient
- Increased current output of the anode by inhibitors due to reduced resistivity (consider in CP system design)

□ Maintenance of CP

- Monitor potentials (instant off potential, open circuit potential etc.)
- Adjust power supply current on ICCP systems as required or
- Replace sacrificial anodes on SACP systems as required

Conclusions & Recommendations

□Whole of Life Cost:

Moderate upfront cost
<u>SCMs</u> (standard practice): Negligible cost
<u>Inhibitors</u>: up to 90 \$/m³
CP continuity: Minimal additional cost
Low maintenance cost
<u>SCMs</u>: None
<u>Inhibitors</u>: None
CP installation: Moderate for SACP, High for ICCP
Low whole of life cost

