Technology for environmental protection

Channel Deepening Project Lyttelton Port, NZ

Outline

- Brief background on Lyttelton Port and the Channel Deepening Project
- Key challenges and the technology-based solutions
 - Real-time water quality monitoring
 - Turbidity trigger system
 - Real-time data processing and web-based interface
- DUKC and reduction in dredge volumes

Lyttelton Port

- Bank Peninsula, South Island, NZ
- Connected to Christchurch via road and rail (12km to CBD)
- Volcanic harbor, infilled with soft silts
- Water depths 5-11m
- 2010/2011 earthquakes caused significant damage, rebuild required
- Harbour culturally important to Iwi

the strategy mate from

Application South research as

We include a fight from

PL Interruptional parties, Discussion and represented to

Real-spirit and some

Propriate theory instant

total an an address

inducting Wheel Conception in a

Lyttelton Port operations

We service services from the Bahing industry, fertilizer, gypsum, coment, non-containerised cargo and imported vehicles.

diam'r

COLUMN CONTINUES. man states and

633 A

The President mention . 24/7

South Mand Port TEU volumes

This literature (2017), implementer (2019)

Channel Deepening Project

- Post-quake recovery designed for deep draught capable ships
- Pre-dredge declared depth 11.9m CD draught 10.5m all tides, 12.4m across high
- Full Channel Deepening Project 14.5m all tides, 1st stage – 12.5m all tides.
- Total volume 18 million m³, this stage 6 million m³
- Deepen (~2m), widen by 20m, lengthen by 2.5km and increase size of swing basin

• Time constraints

Key Challenges

- High ecological values within harbor and offshore
- Protection of deep cultural values
- Keen stakeholder interest
- Easily re-suspended and mobile sediments
- Financial viability

Solutions

- Invest in robust real-time water quality monitoring
- Involve stakeholders in design and implementation of environmental management systems
- Robust adaptive management and turbidity trigger system
- Web-based data management, processing and display
- No secrets data available real-time and all reporting
- Reduce dredging volumes (Giles to discuss)

Turbidity management

- Chose to integrate management of dredging operations and turbidity plumes in real-time, all the time
- Utilise technology to integrate elements and provide interface
 - Complex real-time water quality data
 - Real-time meteorological, wave and current data
 - Dredge location
 - Complex turbidity trigger arrangement
- Fully transparent, key data available to all.

Turbidity trigger system

- Critical to address stakeholder concerns
- Background + modelled dredge-plume based trigger
- Designed to preserve level and character of existing background conditions
- Three tiers, each with a NTU level and hours per 30 days allowed above that level

Web based system

- Received data from 16 telemetered buoys and met station
- Ran various algorithms in real-time
- Automated alerts
- Displayed all data
- Simple colour coded dashboard
- Mobile device optimised

Web based system

- Received data from 16 telemetered buoys and met station
- Ran various algorithms in real-time
- Automated alerts
- Displayed all data
- Simple colour coded dashboard
- Mobile device optimised

Web based system

- Full interrogation over entire time series
- Key tool in managing dredge
- On-display permanently on bridge of *Fairway*
- Concurrent met, wave and current data

Public website

 Simplified data available to anyone, real-time 24/7

Outcomes

- No dredge caused exceedance of Tier 3 No delays to project
- System enabled dredge to tune operations to materials and conditions, resulting in efficient dredging
- No public complaints or adverse media
- Met environmental and cultural expectations
- No variations to contract

OUKC Internet Annual I					tidetter 🕈 Tage	
AXEL MAENSK	See to G	Sea to Cashin Guay 2.6.3 - Deep Container Berth (Container) (PORT Side Tri)			C Approved III	
Notationale Man (Huganit)						
Net within Dantes - 15 1955 - Gett Bartade O	Carlos - Court Devicy (in the	N 13 39 m			Set for neighbor	
menorement films (1984a-1975) rises	(H) -	Sockey (Sold pro: 10.1	(a)+)			
¢.		Dealt of Test Cl	-			
i i an Canaday 🗮 Raja Canaday	10-00 11 May	ana ina ina an Taona in	e data datang anan atau menuntuk han Alf	11 May 24 May 11 May	11.640 (10.01	
Balling Winchise	084a.20% H	40 to 10May/2010 0000, 8 here 12 mins	Meanium Dialt for Turaction Start Time	38Max2118	101 14,384	
	All Verdents		Massivary Draft for High W	ntern (10 minute memoier window topi	-	
Open Street	Circus Titria	Turnine .	Max Draft	High	High Water	
000Aug2010-1000	00Hrag2010 1108	O fors 40 motor	00Mag2010 1056 12.28m	20Mes2279-4741 2 23H		
Table Contract and	title + SAR Eliteration of the same		0084au/00-00 40945 44 78au	0084av/2510 (9848-2-30m		

They do not a

7 for a 65 miles

10May 2010-2419

1014/2010 1012

10060010101010

10466-2010-0048

10May 1019 BUSY MARKS

10May2010-2040-14-88ee

10May2010-001721204

10544-2010-2008-2-404

0	UNIC Table							
	500 (kc) 0	875 (SZ) Ø	Squatory O	Heat (m) 0	Table (Fig. 0)	100 (m) -00	URC (H) Ø	UNCLOSE D
190	15.0	89/0808	0.72	6.00	1.80	0.30	5.00	3.01
MecURD (BC)	104	09/3636	5.83	0.00	1.42	0.36	3.38	3.80
Mr-LHC (MR)	19.0	00/0106	0.85	0.00	1.82	0.35	143	0.01
Heath	15.0	000007	0.62	0.00	1.82	0.95	3.20	3.10
Manhamira Bag	80	ID00041	0.05	6.62	1.04	0.33	1.85	1.85
Breach Bay	9.0	CO-DO-R	8.33	0.00	1.00	0.37	2.17	2.82
Participant Rock	8.0	10/067	3.36	0.00	1.89	10.0	1.86	123
Chatesi Barl	8.6	894712	2.11	0.00	1.00	0.27	1.88	1.22
Switzy Basin	-0.0	899708	3.0	0.00	131	0.00	1.62	1.42

SDUKC units	Pandada - Veyages - Vessels - Systematics	Day + Olestaniar + 4
G AXEL WAERSK	Sea to Costlin Quay 2.8.3 - Deep Container Berth (Container) (PORT Side To)	5 Approval (2) -
Diall in Think Distance - SAVETS	LNC: 00/0000 T3 30 en Chart Overlag-00/0003 T3 30 m	
		Conversional Stationary 2018 1722
	DUKC Chart Overlays	3
	Ser -	
J		

Stage 1 design requirements

- Minimal delays for 12.5m vessels.
- Sailing window "every tide" for 13.0m 13.3m vessels.
- 14.5m vessels not a design criterion.

Annual (non)sailing window statistics for Axel Maersk @ 13.0m

Grounding risk under suggested static UKC rule

Grounding risk under suggested static UKC rule

Waves responsible for grounding under static rule

Outcome

- LPC selected optimised channel design and operational DUKC system.
- Saving in capital dredging estimated at 4.2M m³ (approx. 40%) or approximately \$40M compared with the initial channel design.
- Saving in capital dredging of 0.8M m³ (approx. 13%) or approx. \$8M relative to OMC static channel design.
- Additional operational DUKC benefits:
 - Maximise port accessibility (benefit from over dredge)
 - Management of sedimentation
 - Risk management

Thankyou

CAWTHRON

The power of science*

